Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.914
Filtrar
1.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594249

RESUMO

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632312

RESUMO

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Assuntos
Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Umidade , Proteômica , RNA Ribossômico 16S , Temperatura , Fatores de Transcrição , Ácidos e Sais Biliares , Ácido Litocólico
3.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586454

RESUMO

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Intestino Delgado , Ratos , Camundongos , Animais , Masculino , Feminino , Ratos Wistar , Camundongos Endogâmicos C57BL , Intestino Delgado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Dieta
4.
Neuron ; 112(6): 865-867, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513615

RESUMO

The brain-gut neurocircuitry is proving to be finely involved in a wide range of physiological functions. In this issue of Neuron, Ren et al.1 show that adrenergic signaling suppresses postprandial glucagon-like peptide 1 (GLP-1) secretion. This, in turn, raises circulating glucose levels and impairs brain glucose uptake and cognitive function.


Assuntos
Glicemia , Encéfalo , Cognição , Peptídeo 1 Semelhante ao Glucagon , Intestinos , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Eixo Encéfalo-Intestino , Intestinos/metabolismo , Humanos , Animais , Camundongos , Encéfalo/metabolismo
5.
Eur J Pharmacol ; 970: 176476, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493915

RESUMO

BACKGROUND: Nowadays type 2 diabetes mellitus (T2DM) leads to population mortality growth. Today glucagon-like peptide type 1 receptor agonists (GLP-1 RA) are one of the most promising glucose-lowered drugs with anorexigenic and cardioprotective effects. The present study aims to determine the effects of GLP-1 RA semaglutide 6-month therapy on T2DM patient metabolic parameters and adipose progenitor cell health. METHODS: T2DM patients (N = 8) underwent clinical characterization and subcutaneous fat biopsy at start point and after semaglutide 6-month therapy. Adipose-derived stem cells (ADSC) were isolated by enzymatic method. Cell proliferation analysis was performed by MTT and immunocytochemistry. White and beige adipogenesis was analyzed by BODIPY493/503 staining and confocal microscopy. Adipocyte's metabolic properties were estimated by 3H- and 14C-based metabolic assays. Thermogenesis analysis was performed by ERthermAC staining and confocal microscopy. Protein markers were assessed by Western blotting. RESULTS: Semaglutide 6-month therapy demonstrated significant anorexigenic and glucose-lowering effects. However, insulin sensitivity (HOMA-IR and M-index) was unchanged after therapy. Semaglutide 6-month therapy increased ADSC proliferation and white and beige adipogenesis. Moreover, lipid droplets fragmentation was observed in beige adipocytes. Both white and beige adipocytes after semaglutide therapy demonstrated 2-3 fold growth of glucose uptake without changes in insulin sensitivity. Newly formed white adipocytes demonstrated glucose utilization for active ATP synthesis, whereas beige adipocytes for canonical thermogenesis. CONCLUSIONS: Our study has revealed that semaglutide 6-month therapy has not only systemic anorexigenic effects, but can markedly improve adipose tissue health. We have demonstrated critical restoration of ADSC renewal functions, which potentially can be involved in semaglutide based weight loss.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Resistência à Insulina , Humanos , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo Marrom/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Adipócitos Brancos/metabolismo , Glucose/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
6.
Sci Rep ; 14(1): 7557, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555375

RESUMO

Although thorough chewing lowers postprandial glucose concentrations, research on the effectiveness of chewing vegetables in different forms on postprandial glucose metabolism remains limited. This study examined the effects of vegetables consumed in solid versus puree forms on postprandial glucose metabolism. Nineteen healthy young men completed two 180-min trials on separate days in a random order: the chewing trial involved the consumption of shredded cabbage with chewing and the non-chewing trial involved the consumption of pureed cabbage without chewing. Energy jelly was consumed immediately after the consumption of shredded or puree cabbage. Blood samples were collected at 0, 30, 45, 60, 90, 120 and 180 min. Circulating concentrations of glucose, insulin, total glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) concentrations were measured from the plasma. Although plasma glucose concentrations did not differ between the trials, the plasma insulin and GIP incremental area under the curve values were higher in the chewing than in the non-chewing trial. Postprandial total GLP-1 concentrations were higher in the chewing than in the non-chewing trial at 45, 60 and 90 min. This study demonstrates that consuming shredded cabbage while chewing enhances postprandial incretin secretion but has no effect on postprandial glucose concentration.Trial registration: Clinical trial registration ID.: UMIN000052662, registered 31 October 2023.


Assuntos
Glicemia , Verduras , Masculino , Humanos , Verduras/metabolismo , Glicemia/metabolismo , Mastigação , Glucose/metabolismo , Insulina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Polipeptídeo Inibidor Gástrico , Período Pós-Prandial
7.
Clin Exp Pharmacol Physiol ; 51(5): e13854, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527859

RESUMO

Sotagliflozin is the first dual SGLT1/2 inhibitor antidiabetic drug approved by the US Food and Drug Administration for the management of heart failure. SGLT1/2 inhibition is observed to potentiate the secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1). The current preclinical research sought to investigate the effect of sotagliflozin on the secretion of fat-regulating peptides such as GLP-1, glucagon and fibroblast growth factor 21 (FGF21) and their prospective association with sotagliflozin's potential beneficial effects on dyslipidaemia. During an oral fat tolerance test in mice, sotagliflozin substantially increased GLP-1 and insulin concentrations. Although sotagliflozin alone did not ameliorate postprandial lipemia, its combination with linagliptin (DPP-IV inhibitor) significantly improved lipid tolerance comparable to orlistat (lipase inhibitor). In a triton-induced hypertriglyceridemia model, sotagliflozin, along with other medications (fenofibrate, exenatide and linagliptin) reduced fat excursion; however, co-administration with linagliptin provided no extra advantage. Furthermore, sotagliflozin stimulated glucagon secretion in the alpha TC1.6 cells and healthy mice, which resulted in an increased circulating FGF21 and ß-hydroxybutyrate concentration. Finally, chronic treatment of sotagliflozin in high-fat diet (HFD)-fed obese mice resulted in reduced body weight gain, liver triglyceride, cholesterol, interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) levels compared with the placebo group. However, the addition of linagliptin did not provide any additional benefit. In conclusion, sotagliflozin was found to have an effect on GLP-1 and also stimulate the release of glucagon and FGF21, which are important for regulating fat metabolism. Therefore, sotagliflozin might represent a potential therapeutic approach for the treatment of diabetic dyslipidemia and steatohepatitis.


Assuntos
Dislipidemias , Fatores de Crescimento de Fibroblastos , Glucagon , Glicosídeos , Camundongos , Animais , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Linagliptina/farmacologia , Insulina/metabolismo , Dislipidemias/tratamento farmacológico , Glicemia/metabolismo
8.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 115-121, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511400

RESUMO

PURPOSE OF REVIEW: Various gut hormones interact with the brain through delicate communication, thereby influencing appetite and subsequent changes in body weight. This review summarizes the effects of gut hormones on appetite, with a focus on recent research. RECENT FINDINGS: Ghrelin is known as an orexigenic hormone, whereas glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), postprandial peptide YY (PYY), and oxyntomodulin (OXM) are known as anorexigenic hormones. Recent human studies have revealed that gut hormones act differently in various systems, including adipose tissue, beyond appetite and energy intake, and even involve in high-order thinking. Environmental factors including meal schedule, food contents and quality, type of exercise, and sleep deprivation also play a role in the influence of gut hormone on appetite, weight change, and obesity. Recently published studies have shown that retatrutide, a triple-agonist of GLP-1, GIP, and glucagon receptor, and orforglipron, a GLP-1 receptor partial agonist, are effective in weight loss and improving various metabolic parameters associated with obesity. SUMMARY: Various gut hormones influence appetite, and several drugs targeting these receptors have been reported to exert positive effects on weight loss in humans. Given that diverse dietary and environmental factors affect the actions of gut hormones and appetite, there is a need for integrated and largescale long-term studies in this field.


Assuntos
Regulação do Apetite , Hormônios Gastrointestinais , Obesidade , Humanos , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/fisiologia , Regulação do Apetite/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Colecistocinina/fisiologia , Colecistocinina/metabolismo , Polipeptídeo Inibidor Gástrico/fisiologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Peptídeo YY/metabolismo , Peptídeo YY/fisiologia , Oxintomodulina , Animais , Grelina/fisiologia , Grelina/metabolismo , Apetite/fisiologia , Apetite/efeitos dos fármacos
9.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 131-137, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533785

RESUMO

PURPOSE OF REVIEW: Metabolic and bariatric surgery (MBS) and endoscopic bariatric therapies (EBT) are being increasingly utilized for the management of obesity. They work through multiple mechanisms, including restriction, malabsorption, and changes in the gastrointestinal hormonal and motility. RECENT FINDINGS: Roux-en-Y gastric bypass (RYGB) and laparoscopic sleeve gastrectomy (LSG) cause decrease in leptin, increase in GLP-1 and PYY, and variable changes in ghrelin (generally thought to decrease). RYGB and LSG lead to rapid gastric emptying, increase in small bowel motility, and possible decrease in colonic motility. Endoscopic sleeve gastroplasty (ESG) causes decrease in leptin and increase in GLP-1, ghrelin, and PYY; and delayed gastric motility. SUMMARY: Understanding mechanisms of action for MBS and EBT is critical for optimal care of patients and will help in further refinement of these interventions.


Assuntos
Cirurgia Bariátrica , Hormônios Gastrointestinais , Motilidade Gastrointestinal , Humanos , Motilidade Gastrointestinal/fisiologia , Cirurgia Bariátrica/métodos , Hormônios Gastrointestinais/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/cirurgia , Obesidade/metabolismo , Obesidade/fisiopatologia , Leptina/metabolismo , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Derivação Gástrica/métodos , Derivação Gástrica/efeitos adversos , Peptídeo YY/metabolismo
10.
Neurogastroenterol Motil ; 36(5): e14779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488234

RESUMO

BACKGROUND: Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS: The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS: HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS: These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.


Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Motilidade Gastrointestinal , Sistema de Sinalização das MAP Quinases , Neurotransmissores , Ratos Sprague-Dawley , Animais , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Ratos , Masculino , Neurotransmissores/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
11.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494045

RESUMO

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Assuntos
Polipeptídeo Inibidor Gástrico , Sobrepeso , Ratos , Masculino , Feminino , Animais , Sobrepeso/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Incretinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Peptídeos/metabolismo , Homeostase , RNA Mensageiro/genética
12.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353610

RESUMO

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Adulto , Humanos , Adolescente , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
13.
Biochem Biophys Res Commun ; 704: 149708, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417346

RESUMO

Glucagon like peptide-1 (GLP-1) is a peptide hormone encoded by the pre-proglucagon gene that serves multiple physiological functions, including incretin action. While GLP-1 is primarily synthesized in the L cells of the lower intestine, recent findings indicate its presence in the stomachs of both rats and humans. However, the role of gastric GLP-1 in other species remains unclear. In this study, we aimed to identify GLP-1-producing cells and examine the localization of GLP-1 production in the mouse stomach. We found that pre-proglucagon mRNA was higher in the corpus than that in the antrum of the stomach. In addition, GLP-1 immunoreactive cells were found in the gastric mucosa, and their cell number was higher in the corpus than that in the antrum. Double immunofluorescence showed that some GLP-1 immunoreactive cells displayed somatostatin immunoreactivity, whereas did not co-localize with ghrelin and gastrin. Moreover, transmembrane G protein-coupled Receptor 5 (TGR5) agonist decreased pre-proglucagon mRNA expression in SG-1 cells in a concentration-dependent manner, and in vivo experiments showed a decrease in its mRNA levels in the gastric corpus but not in the antrum. This study marks the first report of GLP-1 production in the mouse stomach. Our findings suggest that gastric pre-proglucagon mRNA expression is regulated by a distinct mechanism compared to the L cells of the lower intestine.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Estômago , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Intestinos/metabolismo , Proglucagon/metabolismo , RNA Mensageiro/genética , Estômago/metabolismo
14.
Gen Comp Endocrinol ; 350: 114470, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346454

RESUMO

Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.


Assuntos
Squalus acanthias , Squalus , Animais , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacologia , Glucose/metabolismo , Fígado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia
15.
Am J Physiol Endocrinol Metab ; 326(4): E472-E480, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381398

RESUMO

New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Humanos , Incretinas/uso terapêutico , Incretinas/metabolismo , Apetite , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Encéfalo/metabolismo , Redução de Peso , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
16.
Peptides ; 174: 171168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320643

RESUMO

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Receptores dos Hormônios Gastrointestinais , Humanos , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glicemia/metabolismo , Duodeno/metabolismo , Peptídeos/uso terapêutico , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
17.
Int J Biol Macromol ; 262(Pt 1): 130062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340923

RESUMO

Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder. Polysaccharides from Phellinus linteus (PLP) have been found to have anti-diabetes effects, but the mechanism has not been elucidated. The purpose of this study was to investigate the mechanism of PLP on T2DM through the gut microbiota and bile acids metabolism. The T2DM rat model was induced by a high-fat high-carbohydrate (HFHC) diet and streptozocin (30 mg/kg). We found that PLP ameliorated diabetes symptoms. Besides, PLP intervention increased the abundance of g_Bacteroides, g_Parabacteroides, and g_Alistioes, which are associated with the biosynthesis of short-chain fatty acids (SCFAs) and bile acids (BAs) metabolism. Meanwhile, untargeted and targeted metabolomics indicated that PLP could regulate the composition of BAs and increase the levels of SCFAs. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the expression levels of BAs metabolism enzymes in the liver. Finally, the results of correlation analysis and Glucagon-like peptide-1 (GLP-1) showed that PLP stimulated the release of GLP-1 by regulating SCFAs and BAs. In conclusion, this study demonstrated that PLP can regulate gut microbiota and BAs metabolism to promote GLP-1 secretion, thereby increasing insulin release, decreasing blood glucose and attenuating T2DM.


Assuntos
Basidiomycota , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ácidos Graxos Voláteis , Ácidos e Sais Biliares
18.
Curr Opin Nephrol Hypertens ; 33(3): 331-336, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411162

RESUMO

PURPOSE OF REVIEW: Diabetic kidney disease continues to increase, and several novel therapeutic agents have been shown to slow the progression of chronic kidney disease in those with diabetes. This review summarizes more recent data on the role of glucagon-like peptide-1 (GLP-1) receptor agonists and kidney outcomes. RECENT FINDINGS: Posthoc analysis of cardiovascular outcome trials, as well as several retrospective studies, demonstrate benefits of GLP-1 receptor agonist therapy for chronic kidney disease progression in diabetics. Although limited randomized clinical trials evidence assessing the effects of GLP-1 receptor agonists on kidney outcomes in diabetic chronic kidney disease patients have been published, FLOW-CKD trial was halted based on interim data for efficacy, and results are awaited. SUMMARY: GLP-1 receptor agonism is a promising therapy for slowing the progression of diabetic chronic kidney disease. Recent studies support kidney benefits GLP-1 receptor agonists over insulin and dipeptidyl peptidase-4-inhibitors, and the FLOW-CKD trial would inform the potential benefits for reducing the need for dialysis and kidney-disease related mortality in those with kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insuficiência Renal Crônica , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Estudos Retrospectivos
19.
Eur J Pharmacol ; 968: 176419, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38360293

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with ß-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in ß-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated ß-arrestin 1/2 recruitment for diverse ligands, and ß-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased ß-arrestin 1 recruitment but increased ß-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected ß-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in ß-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive ß-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in ß-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in ß-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on ß-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without ß-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and ß-arrestins. Our study offers valuable information about ligand induced ß-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , beta-Arrestina 1/metabolismo , Exenatida/farmacologia , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Ligantes , Oxintomodulina/farmacologia , Proteômica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , beta-Arrestinas/metabolismo
20.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...